Preconditioned Krylov solvers on GPUs
نویسندگان
چکیده
In this paper, we study the effect of enhancing GPU-accelerated Krylov solvers with preconditioners. We consider the BiCGSTAB, CGS, QMR, and IDR( s ) Krylov solvers. For a large set of test matrices, we assess the impact of Jacobi and incomplete factorization preconditioning on the solvers’ numerical stability and time-to-solution performance. We also analyze how the use of a preconditioner impacts the choice of the fastest solver. © 2017 Elsevier B.V. All rights reserved.
منابع مشابه
Development of Krylov and AMG Linear Solvers for Large-Scale Sparse Matrices on GPUs
This research introduce our work on developing Krylov subspace and AMG solvers on NVIDIA GPUs. As SpMV is a crucial part for these iterative methods, SpMV algorithms for single GPU and multiple GPUs are implemented. A HEC matrix format and a communication mechanism are established. And also, a set of specific algorithms for solving preconditioned systems in parallel environments are designed, i...
متن کاملAccelerating Preconditioned Iterative Linear Solvers on Gpu
Linear systems are required to solve in many scientific applications and the solution of these systems often dominates the total running time. In this paper, we introduce our work on developing parallel linear solvers and preconditioners for solving large sparse linear systems using NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a sparse BLAS library for GPUs. Base...
متن کاملIterative Sparse Triangular Solves for Preconditioning
Sparse triangular solvers are typically parallelized using levelscheduling techniques, but parallel efficiency is poor on high-throughput architectures like GPUs. We propose using an iterative approach for solving sparse triangular systems when an approximation is suitable. This approach will not work for all problems, but can be successful for sparse triangular matrices arising from incomplete...
متن کاملOn preconditioned eigensolvers and Invert-Lanczos processes
This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...
متن کاملPSPIKE: A Parallel Hybrid Sparse Linear System Solver
The availability of large-scale computing platforms comprised of tens of thousands of multicore processors motivates the need for the next generation of highly scalable sparse linear system solvers. These solvers must optimize parallel performance, processor (serial) performance, as well as memory requirements, while being robust across broad classes of applications and systems. In this paper, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 68 شماره
صفحات -
تاریخ انتشار 2017